M.Sc. (CA) (2nd Semester)

040020206: Computer Oriented Operations Research Methods

Teaching Schedule

Objective:

To introduce basic understanding of mathematical model formulation and findi optimize solution of real world problem with applications to computer science.

Course Outcomes:

CO1: Identify and formulate mathematical models from description of the real problems.

CO2: Recognize the importance and value of Operations Research to solve practical problems.

CO3: To gain an understanding of operation research methods namely Linear Programming, Transportation Problem and Assignment Problem to interpret and analyze optimal solution of real problems.

CO4: Ability to understand and analyze managerial problems to optimize resources namely manpower, cost and time.

CO5: To design a model of a real system and conducting experiments for the purpose of understanding the behavior of the system and evaluating strategies for the system.

Unit 1	Sub Unit	No. of Lecture(s)	Topics Derations Research and Linea	Reference Chapter/Additional Reading	Teaching Methodology	Evaluation Parameters
Unit	ı. mu o	duction of Op	der actions Research and Linea	ar i rogramming		
	1.1	2	Introduction of OR, Characteristic, Phases, Scope of OR	JK #1 - pg no. 2 – 5 VK#1- pg no 1.2-1.12	Chalk & Talk, Power point presentation	
	1.2	2	Drawbacks and difficulties of OR	JK #1 – pg no. 16		Quiz-1
	1.3	2	Introduction and Formulation of LPP with	JK #2 – pg no 28-29 JK #2 – pg no. 31-59		

			Assumptions			
	1.4	2	Graphical Method of LPP	JK #3 – pg no72-94	-	
Unit 2	2: Simp	lex Method f	or Solution of LPP	I		
	2.1	1	Standard form of an LP problem	JK#4- pg no. 104-108	Chalk & Talk, Power point	
	2.2	2	Simplex Algorithm for Maximization case	JK#4- pg no. 108-115	presentation	
	2.3	2	Simplex Algorithm for Minimization case; Big- M Method	JK#4- pg no. 115-130		Quiz-1
	2.4	2	Alternative optimal solution, unbounded solution and Infeasible in terms of the termination of simplex method	JK#4- pg no. 139-142		
Unit 3	3: Tran	sportation a	nd Assignment Problem (TP	& AP)		
	3.1	1	Mathematical formulation of TP	JK#9- pg no. 261-262	Chalk & Talk, Power point	
	3.2	2	Initial Basic feasible Solution: Vogel's Approximation Method(VAM)	JK#9- pg no. 265-267	presentation	Unit test- 1
	3.3	2	Testing for Optimality and finding Optimum solution by Modi Method	JK#9- pg no. 269-280		ome test 1
	3.4	2	Mathematical formulation of AP	JK#10- pg no. 314-317		
	3.5	2	Solving Assignment	JK#10- pg no. 317-321		

				T	1
		problem by Hungarian Method			
Unit 4: Ga	mes Theory	and Sequencing Problems			
4.1	1	Introduction of Theory of Game	JK#12- pg no. 392-393	Chalk & Talk, Power point	Unit test-2
4.2	2	Two-Person Zero-Sum Game	JK#12- pg no. 393-395	presentation	
4.3	2	Rules to determine the Saddle point and Games with Saddle point(Pure Strategies)	JK#12- pg no. 395-397		
4.4	1	Notations, Terminology and assumptions of Sequencing Problems	JK #20 – Page no.724		
4.5	1	Processing two jobs through two Machines	JK #20- pg no. 736-738		
4.6	1	Processing two jobs through m Machines	JK #20- pg no. 736-738		
Unit 5: Pro	oject Schedu	lling (CPM and PERT)		1	
5.1	2	Introduction	JK #13 – pg no.426	Chalk & Talk, Power point	
5.2	2	Basic differences between PERT and CPM	JK #13 -pg no. 426-427	presentation	Unit to at 2
5.3	2	Network Diagrams	JK #13 -pg no. 428-434		Unit test-2
5.4	1	Critical Path Method	JK #13 -pg no. 436-442		
5.5	1	PERT calculations	JK #13 -pg no. 445-449		

Unit 6	Unit 6: Simulation								
	6.1	1	Simulation defined, Advantages and Disadvantages of simulation	JK #19 – pg no. 689 JK #19 – pg no. 692	Chalk & Talk, Power point presentation				
	6.2	2	Types of simulations and steps of simulation process	JK #19 -pg no. 690-692					
	6.3	2	Stochastic simulation and random numbers	JK #19 – pg no.692-694					
	6.4	1	Simulation of pert problems	JK #19 -pg no. 711-713					
	6.5	2	Role of Computers in simulation and its Applications	JK #19 –pg no. 713-714					

Text Book:

- 1. J. K. Sharma, Operations Research Theory and Application,4th Edition, Macmillan Publishers India Ltd. [JK]. Reference Books:
- 1. P Sankaralyer, Operation Research Sigma Series, Tata McGrow-Hill Companies
- 2. Shah, Gor, Soni, Operations Research, PHI.
- 3. V. K. Kapur, Operations Research Problems & Solutions, Sultan Chand & Sons. [VK]
- 4. Frederick S. Hilliesr and Gerald J. Liberman, Introduction to Operation Research, The McGrow-Hill Companies. Note: # denotes chapter number.

Course objectives and Course outcomes mapping:

To formulate mathematical model: CO1, CO2, CO3.

To find optimize solutions of problems: CO3, CO4, CO5.

Course units and Course outcomes mapping:

Unit No.	Unit		Course Outcome				
			CO2	CO3	CO4	CO5	
1	Introduction of operation Research and Linear Programming	√	√				
2	Simplex method for solution of LPP	√	√	√			
3	Transportation and Assignment Problem	√	√	√	√		
4	Game Theory and Sequencing Problem		✓	√	√	√	
5	Project Scheduling(CPM and PERT)		✓	✓	√		
6	Simulation	√	√			√	

Course outcomes and Programme outcomes mapping:

The student will have

PO1: Proficiency in and ability to apply knowledge of computer science and application and mathematics through different equations, probability and statistics.

PO2: Ability to design and develop system, component or process as well as test and maintain it.

PO3: Understanding of professional and ethical responsibility

PO4: Recognition of the need for and an ability to engage in life-long learning

PO5: Knowledge of modern issues

PO6: Ability to use the techniques, skills and modern tools as necessary for software development

	P01	PO2	P03	PO4	P05	P06
CO1	✓					
CO2					✓	
CO3						✓
CO4	✓					
CO5		✓				

Modes of Transaction (Delivery):

Appropriate methods of teaching shall be employed depending on the objectives of the content taught.

- Lecture method shall be used but along with it, as and when required, discussion method would be fruitful. It may be supplemented with various appropriate audio-visual aids.
- Assignment activity should be designed and given to group of student for solution.
- Tutorial should be used to solve students' queries

Activities/Practicum:

The following activities shall be carried out by the teachers.

- 1. To aware students about current practices of Operations research in computer science.
- 2. To introduce the Applications of Transportation and assignment problems in computer science

The following activities shall be carried out by the students.

- 1. To solve case study for the problems namely Transportation, Assignment and game theory
- 2. To find out applications of Operations research in Networking.
- 3. Implementation of operation research methods using programming language.

Concept map:

Concept Map:

Computer Oriented Operations Research Methods

Unit 1

Unit 2

Unit 4

Unit 5

Unit 6

